DAMIC (Dark Matter in CCDs)

DAMIC@SNOLAB

Probing 10 orders of magnitude of dark matter mass using CCDs

Warwick EPP seminar, Feb. 11 2021

Ben Kilminster U. Zürich

Most of this :

is dark matter

Where is it?

Conventional wisdom :

Dark matter is a (yet undetected) weakly interacting particle (WIMP) motivated by supersymmetry (SUSY)

2007 : Prospects for SUSY dark matter

Mass of WIMP dark matter

Experimental searches

SUSY favored region

~Today

SUSY is a moving target

6

Naturalness of Dark Matter Mass scale

Standard WIMP :

- I. "WIMP miracle" scale : M_{DM} ~ 100 GeV
 - Coincidence that SUSY weak cross-sections provide DM density relic Ω_{DM}

Light WIMP :

- 2. "Baryon-DM coincidence" scale : M_{DM} ~ 5 GeV
 - $\rho_{DM} \approx 5 \rho_{B}$
 - ρ_B is set by CP violating phase
 - ρ_{DM} is set by mass of dark matter
 - If we consider the two related :

 \rightarrow M_{DM} = 5 * M_{proton}

Asymmetric DM hep-ph/1111.0293

Typical limit plot of DM search

Baryon-DM coincidence:

Limited by energy threshold (need to detect lower energies)

Ben Kilminster, Feb. 11, 2021, Warwick EPP Seminar

SUSY WIMP: Limited by exposure mass (need bigger detector)

Revisiting dark matter

Dark matter candidates

Reexamine simple assumptions

Matter 15% of universe mass

Dark matter 85% of universe mass

Rich substructure of forces and particles

Ben Kilminster, Feb. 11, 2021, Warwick EPP Seminar

particle ???

χ

More likely

Matter I5% of Dark matter 85% of universe mass universe mass

Rich substructure of forces and particles Perhaps even more rich set of hidden forces and particles

Yet $\rho_{DM} \sim \rho_B$ implies some connection between them

A strong possibility

Hidden photon, A'

- Hidden sector connected to thermal history of universe
 - \rightarrow its interactions set the relic DM abundance
- Perhaps the only hidden particle that communicates with SM particles besides through gravitation
- Interaction is many orders of magnitude below the weak interaction A' interacts with SM by kinetic mixing with the SM photon

Dark matter candidates

Dark Sector Candidates, Anomalies, and Search Techniques

U.S. cosmic visions report 1707.04591

Low-mass direct dark matter searches

 $TeV \rightarrow GeV \rightarrow MeV \rightarrow keV \rightarrow eV \rightarrow meV$

How far can we go ?

Depends on the detector

Hidden photon mediating DM (m_{DM} ~ MeV) DM-electron elastic scattering

Kinetic energy of DM becomes the ionization energy measured

v = 300 km/s

Dark matter Mass : 1 MeV

$$E_e \leq \frac{1}{2} m_{\chi} v_{\chi}^2 \lesssim 3 \text{ eV}\left(\frac{m_{\chi}}{\text{MeV}}\right)$$

Eioniz ~ 3 eV

 χ

 $A'.\phi$

E_{ioniz} ~ 1 eV

We want to detect ionization energies down to ~ IeV

We need a low-energy threshold Detector

(the start of my talk)

Scientific CCDs

Images collected on ~60 CCDs ~600 Mpix

CCD

Readout

CCDs originally created for DES (DECam) by LBNL

Thick to be sensitive to infrared = massive !

DECam @ 173

Scientific CCDs

DAMIC (Dark matter in CCDs)

Pixels are 15 x 15 µm² 675 µm tall

Single lowcapacitance readout node = low noise = low energy threshold Up to 6000 x .6000 pixels

> readout gate by 3 potential gates per pixel

DAMIC-M will use the thickest and biggest CCDs ever made :

Size = 9 cm x 9 cm x 0.675 mm Mass = 20 g / CCD (Likely diced into 4 for better yield !)

Ben Kilminster, Feb. 11, 2021, Warwick EPP Seminar

Charge shifted to output

23

This background is a CCD image

Particle identification in CCD

single point resolution ~ 7 um

Ben Kilminster, Feb. I I, 2021, Warwick EPP Seminar

pixel size : 15 x 15 um²

We can calibrate with various sources

X-ray 55Fe (5.9 keV)

Compton electrons (worms) and point-like hits. Point like hits (diffusion limited)

Gammas 60Co (1.33 & 1.77 MeV)

X-ray calibration of CCDs

Ben Kilminster, Feb. 11, 2021, Warwick EPP Seminar

X-rays vs neutrons

Size of pixel clusters vs. Energy

X-rays bkg-like

Neutrons "DM-like"

(No dependence on depth)

Cluster size → Determines depth used to reject backgrounds

Detecting DM in a CCD

Minimum energy ~ 1 eV to move charge from valence to conduction band

Finding DM

10cm

At any moment, there is 300 GeV of DM mass in a 10x10x10 cm³ box

Per second, $\overline{\Sigma}$ (DM mass) through box = 10 000 000 TeV

Ben Kilminster, Feb. 11, 2021, Warwick EPP Seminar

How to find DM in a box ?

Put CCDs in a box

DAMIC experiment generations

2010-2011 : DAMIC first run at Fermilab
Best DM limits for WIMPs below 4 GeV

2015- now : DAMIC @ SNOLAB
Hidden photon DM search
2017 : First eV-scale results
2019 : Result reported today
WIMP search

• 2016 : First result

• 2020 : New result today

2023 : DAMIC-M @Modane
Single e-h pair resolution (achieved)
Test of prototype CCDs in 2021 (LBC)

DAMIC @ Fermilab : First underground run

NuMI Tunnel Project

Proton bea

Array of 4 CCDs in underground cavern ~100 meter depth

DAMIC @ SNOLAB

DAMIC @ SNOLAB

In SNOLAB 6010m water equivalent depth : suppresses cosmics

Operated 7 CCDs = 40 g

Hidden DM results

Recoils and absorption of DM on electrons

Background is electronics readout noise + leakage current

Ben Kilminster, Feb. 11, 2021, Warwick EPP Seminar

σ ~ 2e-Leakage current : 1E-3 e-/pixel/day (4 e- /mm²/day) (8.2 E -22 A / cm²)

Charge resolution

1907.12628 Phys. Rev. Lett. 123, 181802 (2019)

Results MeV-scale DM

MeV-scale DM recoils off electrons

Results MeV-scale DM MeV-scale DM recoils off electrons

Results vary on dependence of q of the dark matter interaction form factor $\frac{dR}{dE_e} \propto \bar{\sigma_e} \int \frac{dq}{q^2} \eta(m_{\chi}, q, E_e) |F_{DM}(q)|^2 |f_c(q, E_e)|^2$

Results eV-scale DM

Electrons absorb the eV-scale DM and are excited to conduction band

е

e, p

e,p

WIMP results

(Pretty) New

Cluster finding

→ Fits position, energy, RMS size of cluster

Example of cluster

Size of cluster $\sigma_x \rightarrow$ Determines depth of interaction, z

$$\sigma_x^{\bar{2}} = -A \ln |1 - bz|$$

A, b : from cosmic ray tracks

Efficiency

A. AGUILAR-AREVALO et al.

PHYSICAL REVIEW D 94, 082006 (2016)

Efficiency model validated with data
Reading out 100 pixels improves detection efficiency (by reducing noise)

Ben Kilminster, Feb. 11, 2021, Warwick EPP Seminar

arXiv:1607.07410

Backgrounds

GEANT4 simulation of detector with 23 isotopes decaying
Most isotopes constrained by radioactive screening of materials
Some constrained using in situ measurements

Backgrounds

CCD surface

CCD bulk

Backgrounds

Copper shielding, cables	
Radon exposure to Silicon surfaces in processing	
Cosmogenic activation after	
Cosmogenic spallation of ⁴⁰ Ar in air (intrinsic in surface-gathered	

Ben K	lilminster,	Feb. I I	,2021,	Warwick EPP	Seminar
	- <u>-</u>		Sec. 1. 1. 1.		

Dominant Backgrounds	Where ?	Events in CCD (keV ⁻¹ kg ⁻¹ d ⁻¹)
► 60 <mark>Co,</mark> 210Pb ²³⁸ U, ²³² Th	External (Copper, _{cables})	4.4 ± 0.5
→ ²¹⁰ Pb	CCD Surface	3.8 ± 0.4
→ ³ H & ²² Na	CCD Bulk	2.9 ± 0.7
³² Si & ³² P	CCD Bulk	0.17 ± 0.03
Noise	Electronics	< 0.1

All can be reduced !

Reducing backgrounds for DAMIC-M

Dominant Backgrounds	How to reduce
60 <mark>Co,</mark> 210Pb ²³⁸ U, ²³² Th	Electro-forming copper underground
²¹⁰ Pb	Cleaner CCD processing/ fabrication
³ H & ²² Na	Shielding silicon Underground storage & processing
³² Si & ³² P	Silicon vertex tagging*

Ben Kilminster, Feb. 11, 2021, Warwick EPP Seminar

* Not what you expect !

Silicon vertex tagging in DAMIC

Intrinsic ³²Si rejected by tagging ³²Si \rightarrow ³²P \rightarrow ³²S sequence ($\tau_{\frac{1}{2}}$ ~14 days)

Search for
 sequences of βs
 starting in the same
 pixel of the CCD in
 different images

- DAMIC unique spatial resolution and excellent duty cycle allows to reject this background (also other β-β sequences e.g. ²¹⁰Pb)
- New paper being reviewed with reduced uncertainties

CCDs have unique spatial resolution

Three a at the same pixel location!

Corresponds to E = 5.4 MeVE = 6.8 MeVE = 8.8 MeVdecay chain of 3 1 2 **Thorium** 228 Ra 232 Th α 4.01 MeV 14 Gyr 5.8 yr Δt = 17.8 d $\Lambda t = 5.5 h$ $^{-}+\gamma$ 228 Ac 46 keV $\beta^- + \gamma$ 6.1 hr 2.14 MeV 224 Ra 220 Rn 212 Pb 228 Th 216 Po α α α α 542 MeV 5.69 MeV 6.29 MeV 6.78 MeV 145 ms 1.9 yr 3.7 d 56 s 10.6 hr $\beta^{-}+$ 573 keV 1 208 TI 212 Bi α (36%) 61 min 6.05 MeV $\beta^- + \gamma$ (64%) 3.1 min 2.25 MeV $^{-}+\gamma$ 208 Pb 4.99 MeV arXiv:1506.02562 $212 p_{c}$ α 8.78 MeV 299 ns stable 3 2015 JINST 10 P08014 216Po Si 228Th 212**Po** We set in situ limits on contamination: ITO $238 \cup < 5 \text{ kg}^{-1} \text{ d}^{-1} = 4 \text{ ppt}$ ²²⁰Rn ²⁴Ra Not seen 232 Th < 15 kg⁻¹ d⁻¹ = 43 ppt

Simulation of backgrounds

Backgrounds grouped :
External : detector materials
In CCD bulk
On CCD surfaces

Model : • GEANT simulation compared to data • 2D model : energy vs. cluster size Cluster size constrains depth

Some energy regions excluded in fits due to poor modeling

A priori uses fast clustering algorithm - not perfect

Using log-likelihood clustering

Good agreement at low σ_x

Systematic uncertainty : Partial charge collection region

Ben Kilminster, Feb. 11, 2021, Warwick EPP Seminar

Partial charge collection region

Results

Results of background + signal fit

Possible explanations of excess

Energy threshold effect
 Under-predicted background component
 Unknown background component
 Due to partial charge collection
 An actual DM signal (WIMP or other)

Energy projection

Does not appear to be energy-threshold effect

Ben Kilminster, Feb. 11, 2021, Warwick EPP Seminar

summed over all σ_x

Surface background modeling ?

²¹⁰Pb peak can be studied

Ben Kilminster, Feb. 11, 2021, Warwick EPP Seminar

Appears well modeled

Problem with Partial Charge Collection (PCC) model?

Model of PCC on backside with systematic uncertainties

Cannot explain excess

Is signal localized in one part of CCD ?

Excess is spread out - not just one part of CCD

Nuclear recoil calibrations

Ionization efficiency in silicon

- Two independent experiments using different techniques
- Greatly improved statistical uncertainties at low energies
- Both find departure from Lindhard calculation
 - Ionization energy yield lower than expected

Signal excess energy distribution

Nuclear recoil energy scale on top (calibrated to neutrons)

Ben Kilminster, Feb. 11, 2021, Warwick EPP Seminar

Possible explanations of excess

Energy threshold effect
Under-predicted background component
Due to partial charge collection
Unknown background component
An actual DM signal (WIMP or other)

DAMIC 2020 limits

Observed limit is, of course, worse than expected

The next generation : DAMIC-M DAMIC-M Factor of 10 improvement in energy threshold and resolution 500 grams (10 times bigger) Redesigned to achieve 50 times reduction in background 5 dru \rightarrow 0.1 dru Mitigation techniques mentioned previously Moving from SNOLAB to Modane (LSM) in France -2 hours from Geneva Approved, funded, prototyping underway Sensitive to nuclear recoils, electron

recoils, y absorption from A'

Achieving a factor of 10 reduction in noise threshold

Goal is to achieve an energy threshold for detecting DM signals as low as ~1 eV

Achieved energy resolution : 0.07 e-

Ben Kilminster, Feb. 11, 2021, Warwick EPP Seminar

Skipper CCD allows identification of single electrons of produced ionization!
DAMIC-M Collaboration

DAMIC-M R&D and prototyping ongoing

Recent progress with DAMIC-M CCDs

) Silicon crystal produced (Denmark)

2) Wafers cut (U.K.)

3) Wafers shipped across ocean

4) Wafers stored (Canada)

Total equivalent surface exposure 14.3 days ! Cosmogenic activation minimized !

CCD packaging

Progress packaging different size CCDs

DAMIC-M reach

WIMP nuclear recoil search

Hidden photon search

DAMIC-M reach for nuclear recoils of WIMP

Ben Kilminster, Feb. 11, 2021, Warwick EPP Seminar

As a function of kinetic mixing parameter (A' with γ) assuming A' constitutes all dark matter

DAMIC-M reach

DM-electron cross-sections

(heavy mediator >> keV)

-79

Now: First phase of DAMIC-M

Low Background Chamber

Ben Kilminster, Feb. 11, 2021, Warwick EPP Seminar

- A low-background chamber (background level ≈ dru) is in preparation
- Main objectives:
 - characterization of DAMIC-M CCDs in low-bkg environment: dark current;
 ³²Si rate; ²¹⁰Pb surface bkg; CCD packaging
 - first science results with a few CCDs

Installation in 2021

What's coming soon ? 2021-2022

• DAMIC@SNOLAB

Upgrading to use skipper CCDs and probe excess Expect to observe 15 events of excess with 6 months of data taking

- LBC
 - First stage of DAMIC-M
 - 5X lower background
 - Test of pre-production skipper CCDs

Timeline

DAMIC@ DAMIC@ SNOLAB SNOLAB

Upgrade w/ skipper CCDs

Goals: test excess with same background, better energy resolution, lower energy threshold

DAMIC-M

LBC w/ skipper CCDs

R&D / Prototyping

CCD testing Assembly

2023 2024

Data!

2018

Goals: test pre-production CCDs, operate CCD experiment in Modane w/ lower background 2022 2021

DAMIC experiment

generations

2010-2011 : DAMIC first run at Fermilab

- 4 grams of detector mass
- 2e- noise \rightarrow Energy threshold 35 eV
- Best DM limits for WIMPs below 4 GeV

2015- now : DAMIC @ SNOLAB

- 40 grams
- Background 5 events / keV / kg / day
- Hidden photon DM search
 - 2017 : First eV-scale results
 - 2019 : Result reported today
- WIMP search
 - 2016 : First result
 - 2020 : New result today

2023 : DAMIC @ Modane (LSM)

- 500 grams
- 0.2e- noise \rightarrow Energy threshold 3 eV
- Background 0.1 events / keV / kg / day
 - Test of prototype CCDs in 2021 (LBC)

Summary

DAMIC@SNOLAB results

Pioneered direct-detection searches of hidden photon DM
 New WIMP search has 3.4σ excess, still sets strong limits

DAMIC-M is a new experiment at Modane (LSM)

- 2 hours from CERN !
 - Will be sensitive to low-mass WIMPs (~I GeV)
 - Sensitive to predicted cross-sections for several hidden photon
 DM candidates over 10 orders of magnitude in mass
 - Status
 - 2019-2021 : R&D & prototyping
 - 2021 : Low-background chamber (LBC)
 - 2022 : construction
 - end 2023 : Ready for data taking

Future looks bright - or perhaps if we're lucky - dark !

BACKUPS

Quenching factor

(the start of my talk)

Nuclear recoils are "quenched"

Fraction of observed energy : "Quenching factor" depends on Mass Number ...

... but also on recoil energy :

Note lack of data below 4 KeV

Typical quenching factor experiment

Ben Kilminster, DM2018, Low-mass dark matter

Quenching factor experiment in silicon by DAMIC

Ben Kilminster, DM2018, Low-mass dark matter

Alternate QF calibration using photoneutrons

¹²⁴Sb source produces γ s

24 keV

neutrons from

 $^{9}Be(\gamma,n)$ reaction

Comparison of measured ionization energy and simulated recoil energy yields ionization efficiency

To constrain uncertainties from simulation, a number of shielding configurations were used

Shielding configurations

CCD data spectra

Ben Kilminster, DM2018, Low-mass dark matter

Two DAMIC QF calibrations

Ionization efficiency in silicon

- Two independent experiments using different techniques
- Greatly improve statistical uncertainties at low energies
- Both find departure from Lindhard calculation
 - Ionization energy yield lower than expected

DAMIC sensitivity

WIMP 90% exclusion limits

Beyond nuclear recoils Nuclear recoils are limited by small energy deposits Nuclear recoil energy small compared to incoming DM energy Quenching factors reduce signal yield for ionization and scintillation

Only ~10% of collision energy measured

However, can search for :

- Electron recoils
- Photon absorption (hidden photon mixes with SM photon, which excites electron-hole
- No nuclear recoil penalties

CCDs

Lowering the noise: Skipper CCD

- Main difference: the Skipper CCD allows multiple sampling of the same pixel without corrupting the charge packet.
- The final pixel value is the average of the samples **Pixel value** = $\frac{1}{N}\Sigma_i^N$ (pixel sample)_i
- Idea proposed in 1990 by Janesick et al. (doi:10.1117/12.19452)

Lowering the noise: Skipper CCD

- Main difference: the Skipper CCD allows multiple sampling of the same pixel without corrupting the charge packet.
- The final pixel value is the average of the samples **Pixel value** = $\frac{1}{N}\Sigma_{i}^{N}$ (pixel sample)_i
- Idea proposed in 1990 by Janesick et al. (doi:10.1117/12.19452)

